
Linux Kernel Futex Fun:
Exploiting CVE-2014-3153

Dougall Johnson

Overview

• Futex system call

• Kernel implementation

• CVE-2014-3153

• My approach to exploiting it

Futexes
• “Fast user-space mutexes”

• 32-bit integer in shared memory

• Designed to be used entirely in user-space unless
contended

• When the lock is contended, the futex system call
is used

Futex Syscall
int futex(int *uaddr, int op, int val,  
 const struct timespec *timeout,  
 int *uaddr2, int val3);

• Action depends on the op argument

• The arguments can be unused, or cast to different
types

• No glibc wrapper, need to use the syscall function
to invoke it: syscall(SYS_futex, ...)

FUTEX_WAIT and
FUTEX_WAKE

• When lock acquisition fails, the thread makes the
futex(…, FUTEX_WAIT, …) system call, which
sleeps the thread

• When the lock is released, the owner will make the
futex(…, FUTEX_WAKE, …) system call, which will
wake up any waiters

FUTEX_REQUEUE

• Thundering herd problem: FUTEX_WAKE wakes
up several processes, all of which attempt to
acquire another futex

• Instead, FUTEX_REQUEUE moves a number of
waiters to another futex without waking them

PI futexes
• “Priority inheritance” futexes are semantically

different, but similar

• The user-space futex value is zero for unlocked, or
holds the thread ID of the owner

• The FUTEX_LOCK_PI and FUTEX_UNLOCK_PI
calls are used instead of wait and wake

• Unlocking a PI-futex wakes only the highest priority
waiter

FUTEX_CMP_REQUEUE_PI
• Avoid “thundering herd” when moving from a non-

PI futex to a PI-futex

• Waiters call FUTEX_WAIT_REQUEUE_PI to sleep

• Another thread calls FUTEX_CMP_REQUEUE_PI
to “requeue” the waiters to the PI-futex

• If the PI-futex is unlocked, one of the threads will
lock it and wake

Kernel Implementation

• Kernel keeps track of waiters, but forgets about
futexes with no waiters

• A futex_q structure represents each waiting thread

• An additional rt_mutex_waiter structure is used for
each thread waiting on a PI futex

futex_q
• Waiters on pi_futexes only in

that they have a non-NULL
pi_state and rt_waiter

• Waiters created by
WAIT_REQUEUE_PI have a
requeue_pi_key indicating the
destination PI-futex

• These structures are only
needed while the waiter is
waiting, so they are allocated
on the thread’s kernel stack

struct futex_q {  
plist_node list;  

 
task_struct *task;  
spinlock_t *lock_ptr;  
futex_key key;  
futex_pi_state *pi_state;  
rt_mutex_waiter *rt_waiter;  
futex_key *requeue_pi_key;  
u32 bitset;  

};

rt_mutex_waiter

• These are kept in a priority-list
on an rt_mutex

• The waiter at the start of list
will be woken when the PI
futex is unlocked

• These are also allocated on
the thread’s kernel stack

struct rt_mutex_waiter {  
plist_node list_entry;  
plist_node pi_list_entry;  
task_struct *task;  
rt_mutex *lock;  

}

CVE-2014-3153

• Posted to oss-sec mailing list on June 5th

• Explanations was somewhat cryptic:

Forbid uaddr == uaddr2 in futex_requeue(..., requeue_pi=1)  
 
If uaddr == uaddr2, then we have broken the rule of only
requeueing from a non-pi futex to a pi futex with this call.
If we attempt this, then dangling pointers may be left for
rt_waiter resulting in an exploitable condition.

Huh?
• Requeueing from uaddr1 to uaddr2 doesn’t look

possible

• FUTEX_WAIT_REQUEUE_PI already verifies that
uaddr1 != uaddr2, and then sets requeue_pi_key to
the key for uaddr2

• FUTEX_CMP_REQUEUE_PI fails unless uaddr2
matches the requeue_pi_key

• Even if I could, it wouldn’t necessarily break things

Triggering the Vulnerability
• The requeue_pi_key field is never cleared, so I can requeue

twice to the same destination

• By setting the value to zero (unlocked) in memory, the thread
will be resumed as though it had never joined the
rt_mutex_waiter list

Thread A: futex_wait_requeue_pi(&futex1, &futex2)  
Thread B: futex_lock_pi(&futex2)  
Thread B: futex_cmp_requeue_pi(&futex1, &futex2)  
Thread B: futex2 = 0  
Thread B: futex_cmp_requeue_pi(&futex2, &futex2)

Stack Use-After-Free
• The thread wakes up,

resuming execution

• It doesn’t unlink the
rt_mutex_waiter from the list

• Whatever happens to be on
the kernel stack will be
interpreted as an
rt_mutex_waiter

rt_mutex

wait_list

kernel
stack

rt_waiter

Kernel Stack Manipulation
• Subsequent syscalls will

use the same memory for
stack frames

• Many syscalls place data
from user-space on the
stack, or data which is
otherwise predictable

• By making some sequence
of system calls, and
performing futex operations,
this can be exploited

rt_mutex

wait_list

frame

frame

frame

Exploitation

• Technique that can work reliably without precise
knowledge of the kernel stack

• Turn this vulnerability into two useful primitives, to
allow leaking and arbitrary memory corruption

Getting Started
• After triggering the vulnerability, all sorts of things

cause crashes, even exiting the program

• Kernel crashes can make development really
painful

• “I HAVE NO TOOLS BECAUSE I’VE DESTROYED
MY TOOLS WITH MY TOOLS”

• Finally managed to get crash dumps using a virtual
serial port in VMware

Preparing the List
• In theory waiters can be added or removed from the

corrupt list

• In practice, rt_mutex_top_waiter verifies the first item in
the list and crashes all the time:  
BUG_ON(w->lock != lock)

• Need to insert nodes before the invalid node so that the
list head is valid

• Use nice to order nodes, and FUTEX_LOCK_PI to add
them to the rt_mutex_waiter list

plist

struct plist_node {  
int prio;  
struct list_head prio_list;  
struct list_head node_list;  

};

prio = 5

prio_list.next
prio_list.prev

node_list.next
node_list.prev

prio = 5

prio_list
prio_list

node_list.next
node_list.prev

prio = ??

prio_list.next
prio_list.prev

node_list.next
node_list.prev

32-bit Linux Memory Split

• Kernel memory is 0xC0000000 and higher

• User memory is 0xBFFFFFFF and lower

• Kernel code can read and write user memory
directly

• (Well, not all 32-bit Linux, but generally)

Manipulating the stack
• The kernel stack can be manipulated with system calls, for

example select stores user controlled data on the stack

• Stack layout is unpredictable, unlike a use after free on the
heap

• Fill the stack with a repeated value to overwrite both

• Use a value which is both a negative integer, and a user-
space pointer (0x80000000 - 0xBFFFFFFF)

• The prior will be negative, and the next pointer will go to a
fake user-space node

priority

prio_list.next
prio_list.prev

node_list.next
node_list.prev

prio = 5

prio_list.next
prio_list.prev
node_list.next
node_list.prev

prio = 5

prio_list
prio_list
node_list.next
node_list.prev

prio < 0
prio_list.next
prio_list
node_list.next
node_list.

Manipulating the stack

Node Insertion
• Priority list insertion first walks the prio_list until a

higher priority value is found

• It then inserts the new node before that (using the
prev pointers)

• By inserting a low priority node, it will traverse the
“freed” node and be inserted before the user-
space node

list_add_tail

priority > 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

prio = 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

list_add_tail

priority > 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

prio = 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

pointer 1

pointer 2

Information leak
• Populate the stack with a pointer to a user-space

node (that doubles as a negative number)

• Insert a node (FUTEX_LOCK_PI) with a priority 19
so that it will be inserted adjacent to the user-space
node

• Pointers to a kernel stack are written into user-
space memory

Waking up the thread
• The thread isn’t actually in the list, so it can’t be

woken by unlocking the futex

• It will wake up if I send it a signal, though

• Register a handler for SIGUSR1

• Use pthread_kill to deliver the signal to the right
thread

• The node will be unlinked and execution will resume

Corruption Primitive

priority > 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

prio = 19
prio_list.next
prio_list.prev
node_list.next
node_list.prev

Corruption Primitive

priority > 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

Pointer

Corrupt Value
prio = 19

prio_list.next
prio_list.prev
node_list.next
node_list.prev

priority > 19

prio_list.next
prio_list.prev

node_list.next
node_list.prev

Corrupt Value

Corruption Primitive

Pointer

Finishing the Exploit

• Use these primitives to bypass SMEP and PXN

• Get root

• Clean up kernel memory so the process doesn’t
crash at exit

SMEP / PXN
• First tried jumping to user space code

• Map the node as RWX and write the pointer over a return
address on the stack

• Nope :(

• Supervisor Mode Execution Prevention stops user-space
code from being executed on x86

• Privileged Execute Never is a funny name for exactly the
same thing on ARM

addr_limit
• The addr_limit value is used by the kernel to

validate user-space virtual addresses provided to
system calls

• Its value is generally 0xc000000

• If the value is larger, then system calls will accept
pointers to kernel memory

• Found in the thread_info structure at the top of
each kernel stack

Unaligned Write

• Because the value I can write to kernel space is
actually a user-space pointer, I can’t write a value
bigger than 0xC0000000

• Instead, write a value like 0xB000FFFF at offset 2
from the addr_limit

• This sets the value of addr_limit 0xFFFF0000

Arbitrary Read / Write

• Now we can use kernel-space addresses in system
calls

• Use pipe to create a pair of file descriptors

• write to one then read from the other, using kernel-
space and user-space addresses

Get Root

• Search the task_struct to find the credentials

• Set the uid/gid to zero

• Set the capability bits

Clean up

• Surprisingly hard

• Critically important - the VM still need to be
rebooted every time I test something

• Iterate through the rt_mutex_waiter list fixing each
node to point to the right place

DEMO

Thoughts

• Surprisingly complex problems in seemingly simple
functionality

• Older mitigation bypasses still work

Thanks

• Dan Rosenberg and Fionnbharr Davies for helping

• Mark Dowd and John McDonald for giving me time
to write this presentation

Questions?

